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University of California, Berkeley
Physics H7B Spring 1999 (Strovink)

SOLUTION TO PROBLEM SET 2

1. RHK problem 24.18
Solution: For ease of notation, here we denote
the mean of any function f(v) of the speed v of
a gas molecule by

〈f(v)〉 ≡
∫ ∞
0

f(v′)n(v′)dv′∫ ∞
0

n(v′)dv′

where n(v) (called dN/dv in lecture) is the distri-
bution of v. If this formula is used, n(v) does not
need to be normalized. With this notation, for
example, v̄ ≡ 〈v〉. Proceeding with the problem,

vrms ≡
√
〈v2〉 (RHK Eq. 23.15)

0 ≤ 〈(v − v̄)2〉
〈(v − v̄)2〉 = 〈v2〉 − 〈2vv̄〉+ 〈v̄2〉

= 〈v2〉 − v̄〈2v〉+ v̄2

= 〈v2〉 − 2v̄2 + v̄2

= 〈v2〉 − v̄2

0 ≤ 〈v2〉 − v̄2

v̄2 ≤ 〈v2〉
v̄ ≤

√
〈v2〉

v̄ ≤ vrms .

The equality occurs only when 〈(v − v̄)2〉 = 0,
i.e. all the molecules have the average speed v̄.

2. RHK problem 24.21
Solution: Using the notation introduced above,
(b)

〈v〉 =
∫ v0

0
v′Cv′2dv′∫ v0

0
Cv′2dv′

=
1
4v4

0
1
3v3

0

=
3
4
v0 .

(c)

〈v2〉 =
∫ v0

0
v′2Cv′2dv′∫ v0

0
Cv′2dv′

=
1
5v5

0
1
3v3

0

=
3
5
v2
0

vrms ≡
√
〈v2〉

vrms =

√
3
5
v0 .

(a)

N ≡
∫ v0

0

Cv′2dv′

=
1
3
Cv3

0

3N
v3
0

= C .

3. RHK problem 24.25
Solution:

n(E) ∝ E1/2 exp (−E/kT ) (RHK Eq. 24.27)

Erms ≡
√

〈E2〉

〈E2〉 =
∫ ∞
0

E′2E′1/2 exp (−E′/kT )dE′∫ ∞
0

E′1/2 exp (−E′/kT )dE′

β ≡ 1/kT

〈E2〉 =
∫ ∞
0

E′5/2 exp (−βE′)dE′∫ ∞
0

E′1/2 exp (−βE′)dE′

=

(
d2/dβ2

)(∫ ∞
0

E′1/2 exp (−βE′)dE′)∫ ∞
0

E′1/2 exp (−βE′)dE′

Z ≡
∫ ∞

0

E′1/2 exp (−βE′)dE′

〈E2〉 = d2Z/dβ2

Z
.

The remaining definite integral Z has dimension
(energy)3/2. Since the limits of the integral are
not finite, the only available quantity with which
a dimensionful scale may be set is β, which has
dimension 1/energy. Therefore the integral must
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be equal to β−3/2 multiplied by some constant C:

〈E2〉 =
(
d2/dβ2

)(
Cβ−3/2

)
Cβ−3/2

=

(− 3
2

)(− 5
2

)(
Cβ−7/2

)
Cβ−3/2

=
15
4

β−2

Erms =

√
15
4

β−1

=

√
15
4

kT .

4. RHK problem 23.17
Solution: In Physics H7B, all problems in-
volving numbers should be solved completely in
terms of algebraic symbols before any numbers
are plugged in (otherwise it is much more diffi-
cult to give part credit). Let
T = temperature of interstellar space = 2.7 ◦K
M = molar mass of H2 = 0.0020 kg/mole (RHK
Table 23.1)
NA = Avogadro constant
= 6.022× 1023 molecules/mole
m = mass of H2 molecule = M/NA

kB = Boltzmann constant = 1.38 × 10−23 J/K
Then from RHK Eq. 23.20,

1
2
m〈v2〉 = 3

2
kBT

〈v2〉 = 3kBT

m

vrms ≡
√
〈v2〉

=

√
3kBT

m

=

√
3kBNAT

M

= 183.5 m/sec .

5. RHK problem 23.33
Solution: Let
Re = radius of earth = 6.37× 106 m
Rm = radius of moon = 1.74× 106 m
GMe/R2

e = g = gravitational acceleration at
earth’s surface = 9.81 m/sec2

gm = gravitational acceleration at moon’s sur-
face = 0.16g

vesc = escape velocity at earth’s surface
m = generic molecular mass
NA = Avogadro constant
= 6.022× 1023 molecules/mole
MHyd = molar mass of H2 = 0.0020 kg/mole
(RHK Table 23.1)
MOxy = molar mass of O2 = 0.0320 kg/mole
(RHK Table 23.1)
kB = Boltzmann constant = 1.38× 10−23 J/K
THyd

esc (earth) = temperature (◦K) at which rms
H2 velocity is equal to escape velocity at earth’s
surface
TOxy

esc (earth) = temperature ((◦K) at which rms
O2 velocity is equal to escape velocity at earth’s
surface
THyd

esc (m) = temperature ((◦K) at which rms H2

velocity is equal to escape velocity at moon’s
surface
TOxy

esc (m) = temperature ((◦K) at which rms O2

velocity is equal to escape velocity at moon’s
surface
Then

1
2
mv2

esc =
GMem

Re

v2
esc =

2GMe

Re

= 2gRe

1
2
mv2

rms =
3
2
kBTesc

vrms = vesc (stated by problem)
1
2
mv2

esc =
3
2
kBTesc

1
2
m 2gRe =

3
2
kBTesc

2mgRe

3kB
= Tesc .

We use this general result to evaluate each of
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the four cases posed:

m =
MHyd

NA

THyd
esc (earth) =

2MHydgRe

3kBNA

= 1.003× 104 ◦K

TOxy
esc (earth) =

2MOxygRe

3kBNA

= 1.604× 105 ◦K

THyd
esc (moon) =

2MHydgmRm

3kBNA

= 438 ◦K

TOxy
esc (moon) =

2MOxygmRm

3kBNA

= 7011 ◦K .

At an altitude in the Earth’s atmosphere where
the temperature is ≈ 1000 K, the preceding re-
sults imply that the rms velocity would be only
a factor

√
Tesc/T ≈ √

10 below the escape ve-
locity; because of leakage out of the tail of the
velocity distribution, little hydrogen would be
expected to remain. For oxygen, the rms veloc-
ity would be a factor ≈ √

160 below the escape
velocity, allowing that molecule to survive as an
atmospheric component.

6. RHK problem 23.37
Solution: For path 1, the work W done on the
gas is

W = −
∫

path

p dV (RHK 23.24)

= −
∫ 8

2

p dV −
∫ 8

8

p dV −
∫ 2

8

p dV

= −(12.5 kPa)(6 m3)− 0 + (20 kPa)(6 m3)
= 45 kJ ,

where we have evaluated each straight-line seg-
ment by reading 〈p〉 off the graph, multiplying
it by the difference in V to compute the area

under the line. Similarly, for path 2,

W = −
∫

path

p dV

= −
∫ 8

2

p dV −
∫ 2

8

p dV −
∫ 2

2

p dV

= −(12.5 kPa)(6 m3) + (5 kPa)(6 m3)− 0
= −45 kJ .

7. RHK problem 25.16
Solution: Let
mv = (unknown) mass of vaporized material
(ice), in kg
mf = mass of fused material (ice) = 0.15 kg
Lv = latent heat of vaporization of water =
2256× 103 J/kg
Lf = latent heat of fusion of water = 333× 103

J/kg
c = specific heat capacity of water = 4190
J/kg·C◦

Tv = temperature of steam = 100 ◦C
Tf = temperature of ice = 0 ◦C
T = final temperature of steam-ice mixture =
50 ◦C
The fact that the container is thermally insu-
lated means that the total heat Q transferred
out of the steam molecules is transferred into
the ice molecules:

Q(lost by steam) = Q(gained by ice)
mv(Lv + c(Tv − T )) = mf (Lf + c(T − Tf ))

mv = mf
Lf + c(T − Tf )
Lv + c(Tv − T )

= 0.033 kg .

8. RHK problem 25.21
Solution: Let
Q = (unknown) heat transferred into sample
Ti = initial temperature = 6.6 K
Tf = final temperature = 15 K
m = mass of Al = 0.0012 kg
C = heat capacity per mole of Al
η = coefficient of T 3 in expression for C =
3.16× 10−5 J/mole·K4

MAl = molar mass of Al = 0.0270 kg/mole
(RHK Appendix D)
c = heat capacity per kg of Al = C/MAl
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With these definitions,

Q = m

∫ Tf

Ti

c(T ) dT (RHK Eq. 25.4)

=
m

MAl

∫ Tf

Ti

C(T ) dT

C(T ) = ηT 3

Q =
m

MAl
η

∫ Tf

Ti

T 3dT

=
mη

4MAl

(
T 4

f − T 4
i

)
= 0.0171 J .


